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The Marangoni instability in the nonmoving layer of a liquid exhibiting constant vis- 
cosity was studied in [i-3]. In such chemical engineering processes as, for example, in 
the nonisothermal chemisorption of gases by liquid films, we frequently make use of viscous 
liquids exhibiting high Prandtl numbers [4]. The dynamic viscosity of such liquids dimini- 
shes markedly as temperature rises, and this effect, apparently, must significantly affect 
the critical Marangoni numbers which determine the conditions for the appearance of thermo- 
capillary convection. Taking the variability in the physical properties of the liquid into 
consideration is an urgent problem also in the investigation of the processes in the hydro- 
mechanics and heat and mass exchange that occurs in the growth of crystals [5-8]. 

Below we present a solution for the problem of the stability of a nonmoving layer of 
a viscous liquid in contact with a gas, with provision made for the relationship between 
surface tension and the coefficient of dynamic viscosity to temperature. The neutral sta- 
bility curve has been constructed analytically to link the critical Marangoni number, the 
viscosity gradient through the thickness of the layer, and the wave number of three-dimen- 
sional perturbation. 

Let us examine the nonmoving layer of a liquid at whose free surface heat exchange 
takes place with the ambient medium in accordance with Newton's law. The Navier-Stokes 
equation and the equation for convective heat exchange are taken in the form 

~ a~j ap o ( a~j~ a~ ~ (1) 

aT~Or + (vvT)  ---- ahT, div v ---- 0, 

where v = {Vx, Vy, Vz} is the velocity of the liquid; p, pressure; T, temperature; p, ~, 
and a, density, the dynamic coefficient of viscosity, and the coefficient of thermal dif- 
fusivity; a = %/pcp; %, coefficient of thermal conductivity; Cp, specific heat capacity. 

Let us assume that the viscosity of the liquid depends exponentially on the tempera- 
ture, while the coefficient of surface tension is linearly dependent on temperature: 

~t = ~ Z  ~(T-T'~'), (~ = ( ~  - -  ~ ( T  - -  T~)  ( 2 ) 

(B, e, approximation parameters; Tw, wall temperature). Functions (2) are valid for a broad 
class of incompressible liquids [9-11]. 

Let the state of equilibrium be described by the steady-state solution of (i), corre- 
sponding to the heat-conduction regime: 

v = 0 ,  d2~ ----0, T ( 0 ) = T ~ ,  % -~-  (h) = oc [T (h) - -  To]. ( 3 )  
dy ~ 

Here h is the thickness of the layer; a is the coefficient of heat exchange; T O is the tem- 
perature of the gas. 

The solution of the heat-conduction equation with boundary conditions (3) has the form 

Bi(Tw--ro) y dT Bi(Tw--To) (4) 
- -  r w  = - -  t + B i  h ' d--y- = ( t  + B i )  h 

(B i  = a h / ~  i s  t h e  B l o t  n u m b e r ) .  I n  t h e  f o l l o w i n g  we w i l l  a s sume  t h a t  t h e  t e m p e r a t u r e  o f  
t h e  w a l l  i s  g r e a t e r  t h a n  t h a t  o f  t h e  g a s ,  and  t h a t  t h e  t e m p e r a t u r e  g r a d i e n t  i s  n e g a t i v e  
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(dT/dy < 0). When the flow of heat at the wall is established, the first of the boundary 
conditions in (3) assumes the form ~(dT/dy)(0) = -qw (qw > 0). 

We will use the method of small perturbations to examine the steady state (4) for sta- 
bility. Let v = w, T = T(y) + T'(x, y, z, x) (w and T', perturbations in velocity and tem- 
perature). Let us introduce the dimensionless quantities 

y = g/h,  x = x /h ,  z = z/h,  ~ = t~wl(ph2), Pr  w = ?wla, ?w = ~w!P, 

T--T o ((T--To) E) Ma= e(Tw--To)h Bi (aqwh~ 
o - r ~ :  Yo q ~  " ' ~"~ ~ + m \ ~ 7' 

dT ~ (T w - -  To) Bi w 
N = - - ~ - - ~ - h =  t + B i  , o = --------~ 

?w/h 

(~n = ~w e-N represents the viscosity of the liquid at the surface temperature). 

By applying the curl operation twice to the Navier-Stokes equation we will eliminate 
pressure and obtain a scalar equation for the normal velocity component my = ~. This equa- 
tion and the equation of convective heat exchange is linearized in the vicinity of the steady- 
state solution of (3), (4). As a result we have 

0 2[" O~--!-~ Pr  a O  

where f = aNY; 5 is the Laplace operator; the prime designates the derivative with respect 
to y. 

Further, we will assume that the free surface of the liquid is undeformable (the dis- 
tortion parameter is small), and the effect of the capillary forces reduces to the appearance 
of surface-tension gradients, which are offset by the tangential stresses. For temperature 
perturbations we will assume ordinary boundary-value conditions which take into consideration 
the exchange of heat at the free surface and at the solid wall: 

00) 
o) (0) = 0, - ~ f  (0) = 0, ~ o ( 1 ) = 0 ,  ~ Oy ~ 

0',0,=0,, ( 4) - ~ -  (1) = - -  Bi  0 ( l )  al------+ �9 
0x 2 

(6) 

The first and second of the boundary conditions in (6) follow from the hypothesis of adhesion 
and from the equation of continuity. 

Let us note that with a constant viscosity N = 0, f = 1 we obtain the familiar Pearson 
problem [i] which deals with the appearance of thermocapillary convection in the nonmoving 
layer of the liquid. 

Following the widely accepted Pelieu and Southwell hypothesis [ii], we will look for 
the solution of (5) with boundary conditions (6) in the form 

~(x ,  y,  z, ~) = - - F ( x ,  z )~ (y )e  ~ ,  @(x, y ,  z, T) = f ( x ,  z)O(y)e ~ ( 7 )  

[F(x, z) is the function of the horizontal structure, satisfying the equation AIF = --~iF]. 
Using (5)-(7), we obtain the spectral problem 

o ( ~ "  - -  ~ 2 ~ )  = f ( g ) [ ~ I V  __ 2 ~ 2 ~ "  + ~ 4 ~  __  N i ( ~ , ,  __  ~ 2 ~ )  + 

+ 2 N ( ~ " '  - -  ~ 2 o ' )  + 2 N 2 o  ' '  ], 

P r ~ o  + ~ = |  ( 8 )  

o(0)  = 0, o ' ( 0 )  = 0, ~ ( t )  = 0, w " ( l )  = Ma ~20(1) ,  

0(0)  = 0 , (o r :  @'(0) = 0), @'(1) = - - B i  @(1). 

L e t  u s  e x a m i n e  t h e  n e u t r a l  p e r t u r b a t i o n  o = O. I n  t h i s  c a s e  we o b t a i n  an  e q u a t i o n  
with constant coefficients 

O IV - -  2a2~  ' '  + a 4 o  - -  N i ( o  ' '  - -  a~o)  + 2 N ( o ' "  - -  a ~ o  ')  + 

+ 2N2~  ' '  = 0, O " - - ~ " 0  = o ( 9 )  

with boundary conditions (8). 
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Let us construct the Green's function of the operator 8" - =2@ = 0 with the boundary 
conditions 0(0) = 0, 0'(I) = -Bie(1) and let us calculate its value at the interphase boun- 
dary (y = I): 

G(~, a ,  Bi) = - - e _ a (  a _ B i ) +  e a ( a +  Bi)" 

The  t e m p e r a t u r e  p e r t u r b a t i o n  o f  t h e  f r e e  s u r f a c e  i n  t h i s  c a s e  

1 

0 

a ,  Bi) r (~) d~. 

The neutral stability curve assumes the form 

" N) Ma = (t, ~, 
i (i0) 

a2 ] G (~, a, Bi) m (~) d~ 
0 

[m i s  t h e  s o l u t i o n  o f  t h e  h y d r o d y n a m i c  e q u a t i o n  ( 9 ) ] .  F r o m  r e l a t i o n s h i p  ( 1 0 )  i t  f o l l o w s  
that Ma ~ ~ as a ~ 0 and a ~ ~. It is comparatively simple to construct the asymptote of 
(i0). As a + ~ the influence of the parameter N is insignificant and Eq. (I0) has the same 
asymptotes as the neutral stability curve in the Pearson problem [i]. 

As ~ ~ 0 the hydrodynamic equation (9) is simplified: 

~Iv-~2N~ m + N~ '' = O. 

E q u a t i o n  ( 1 1 )  h a s  a f u n d a m e n t a l  s y s t e m  o f  s o l u t i o n s  ~ = {1 ,  ~ ,  
s y s t e m ,  we o b t a i n  

( l l )  
se-N~, e-Ng}. Using this 

Ma = ~ % (N) wall temperature given, 

Ma = B~i (P2 (N) heat flow given. 
~"-*0 ~2 

The functions %(N) and ~2(N) are found as a result of solving the hydrodynamic equations 

6N4e - N  (N 2 - -  2N -~ 2 - -  2e -N)  

(~1 (N)  : (/V3 __ tSN q- 12) fl- (2N a ~- 5N a -~ 12N ~ q- 12N - -  24) e -h '  -~'~" 

-'+ (6N ~ + t2) ~-~N, 
2Nae - N  (N 2 - -  2N ~- 2 - -  2e -N)  

(P2 (Y)  : �9 N2 _ 4N q- 2 ~- (N 3 ~- N 2 -~ 4N - -  4) e - N  -~ 2e -2N " 

We can verify that as N + 0, % + 80, ~2 + 48, i.e., we will obtain the neutral Pearson 
curve for a liquid layer of constant viscosity. 

Let us introduce the functions Xz = %,/80, X2 = ~2 /48, so that 

Ma/Ma(0)  ---- El(N),  Ma/Ma(0) = E.,(N), ( 1 2 )  

w h e r e  M a ( 0 )  r e p r e s e n t s  t h e  c r i t i c a l  M a r a n g o n i  n u m b e r s  i n  t h e  c a s e  o f  c o n s t a n t  v i s c o s i t y ,  
these numbers having been calculated for the viscosity of the liquid at the film surface. 

Relationships (12) reflect the influence exerted by the relationship of the viscosity 
to the temperature on the critical conditions for the appearance of thermocapillary convec- 
tion in the nonmoving liquid layer. We present the numerical expressions of the functions 

X1, X2: 

N = 0; 0.5; 1; 2; 3; 

%1 = 1; 0~86; 0:65; 0,41; 0.26; 

%2 = t ;  0,83; 0,62; 0.38; 0.23.  

Our attention is called to the strong reduction in the critical Marangoni numbers due to 
the reduction in the viscosity of the liquid. For example, in the case of glycerine, with 
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the temperature drop of 15~ ~ = 0.07 deg -1, N = i the Marangoni numbers are reduced by 
a factor of approximately 1.5. Let us construct the neutral-stability curve over the entire 
range of wave numbers 0 < ~ < ~. For this it is necessary to solve the hydrodynamic equa- 
tion (9). We will seek the solution of (9) in the form of ~(y) = e~nY; substituting this 
expression into (9) gives us the following algebraic equation for the determination of ~n: 

~ i v  2 a ~ + ~  N ~ ~ _  _ _ . [ ~  ~2] @ 2 N ( ~  a ~ )  + 
(~3) 

+ 2 N  ~a= = 0, n = i ,  2, 3, 4. v n  

It is not difficult to find the roots of (13): 

2 52 ~,~ = z ~ - - N / 2 ,  zn = + N ~ / 4 •  

Here  z i s  d e t e r m i n e d  by t h e  r o o t  o f  t h e  q u a d r a t i c  e q u a t i o n ;  i i s  i m a g i n a r y  u n i t y .  L e t  
t a n  % = N a / ( N 2 / 5  + a 2 ) ,  k = ~ r  + a 2) + N2a 2. Then  t h e  r o o t s  o f  ( 1 3 )  w i l l  be  t h e  
following: 

[51 = k cos ~ + i s in  - -  -~-, 

~o ] N 
~ a - = - - k [ c o s - - ~ + i s i n - ~ - j - -  T ,  

[ % - -  i s i n - ~ ]  N ~2 = k cos ~ 2 ' 

~4 = - -  k cos ~ - - / s i n  2 " 

Thus the fundamental system for the solution of (9) has the form 

r (~) = [e kl~ cos k.2~, e h~ sin k2~, e% ~ cos k2~, e%~sin k~}, 
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where k 1=kcos ~02 N.2, k'2~ksin~; k 3~-kcos ~02 N2. Using this system and calculating 

the accompanying integrals, we can calculate the neutral-stability curve, the minimum criti- 
cal Marangoni numbers, and the critical wave numbers (Figs. 1 and 2, Bi = 0.01). 

Since the derived solution makes no provision for the relationship between density 
and temperature, it is valid for small Rayleigh numbers, i.e., for rather thin layers of 
the liquid. In this connection let us make the following comment. As is well known [6, 
ii], there exists a critical film thickness h, such that when h >> h, natural convection pre- 
dominates, while when h << h, the thermocapillary mechanism of lost instability is signifi- 
cant. In the intermediate region both mechanisms of stability loss for the liquid layer 
are active, in the case in which the liquid layer is heated from below. It would be inter- 
esting to evaluate the critical values of the film thickness h** at which the influence of 
the relationship between viscosity and temperature is significant. 

Let us introduce the dimensionless parameter K = NeN/Ma ffi ~w~a/eh, characterizing the 
relationship of the two destabilizing effects: the extent to which viscosity and surface 
tension are dependent on temperature. Using the calculations for the critical Marangoni 
numbers, we will construct the function Ma*(K) (Fig. 3), analysis of which demonstrates 
that even when K ffi 0.05 there is a significant drop (of up to 30%) in the critical Marangoni 
numbers. The film thicknesses on the order of h** = ~w$a/sK correspond to this region of 
change in K, from which it follows that with an increase in the viscosity of the liquid 
and in the parameter 6, proportional to the activation energy of the viscous flow, the cri- 
tical film thicknesses increase. Therefore, the significant reduction in the minimum Maran- 
goni numbers due to reduction in viscosity with a rise in temperature is characteristic 
of liquids with large Prandtl numbers. For example, in the case of glycerine T = 20~ 
Pr = 12,490, h** = 4.8 mm, for MS-20 oil T = 30~ Pr = 7300, h...... = 1.7 mm, for methanol 
T = 25~ Pr = 6, h** = 0.28"i0 -s mm, for toluene T = 25~ Pr "--'"9, h** = 0.16-10 -s mm, 
while for water T = 20~ Pr = 6, h** ffi 0.3"10 -3 mm. The quantity h** is on the order of i- 
5 mm and for conditions at the surface the mechanism for reducing stability as a consequence 
of a reduction in viscosity therefore always acts on liquids with larger Prandtl numbers 
(Pr > i00), while for liquids with moderate Prandtl numbers (organic fluids, water) the 
destabilizing effect of variability in viscosity is insignificant. 

A related problem dealing with the effect on Marangoni convection as a consequence 
of a change in viscosity, dependent on temperature, was covered in [12]. 
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STABILITY IN THE SHEAR LAYER OF A COMPRESSIBLE GAS 

A. N. Kudryavtsev and A. S. Solov'ev UDC 532.526 

In the mixing of two parallel streams of a viscous gas, moving at different velocities, 
near the boundary of separation a flow is formed that is referred to as an ordinary free 
shear layer. Such flows in actual practice are encountered in the boundary layer of a jet 
discharging into a submerged space, in the wake trailing a nonsymmetrically streamlined 
body, etc. The free shear flows are extremely unstable to small perturbations, i.e., the 
shear layer of an incompressible gas, for example, is unstable for all Reynolds numbers 
Re [i]. The stability of the compressible shear layer in the case of finite Re has, appa- 
rently, not been studied earlier. Without provision for viscosity, this problem is solved 
in [2-4], with a number of additional simplifications having been introduced: the tempera- 
ture throughout the entire flow was assumed to be constant and the dynamic profile was given 

by the function U(y) = tanh y. 

In the present study in investigating the stability of the compressible shear layer 
we assume the gas to be viscous and capable of conducting heat, with the velocity and tem- 
perature profiles calculated from corresponding boundary-layer equations [5]. Approxima- 
tions of an incompressible or inviscid gas are thereby attained in the form of limit cases 
in which the Mach number M + 0 or Re + ~. The calculations were performed numerically by 
the orthogonalization method [6]. It is demonstrated that when M ~ i the stability of the 
flow is determined by wave perturbations exhibiting a phase velocity c r = 0 and a zero 
critical Reynolds number Re,. With an increase in M the region of unstable wave numbers nar- 
rows. When M z i, as in the case of the inviscid problem [3], stability is determined by 
traveling waves with c r ~ 0 (the second perturbation mode). It has been observed that for 
the second mode Re, is different from zero and diminishes as M increases. We have construc- 
ted the neutral stability curves, the eigenfunctions, and we have studied the relationship 
between the characteristics of stability and M for the case in which 0 ~ M ~ 2. 

i. Let us examine the plane flow in the shear layer of a compressible viscous heat- 
conducting gas. We will assume the gas to be ideal, with constant heat capacities c V and 
Cp = ~c V, viscosity ~, and thermal conductivity k directly proportional to temperature, 
so that the Prandtl number Pr = pcp/k is constant and that the second viscosity is equal 
to zero. The Navier-Stokes equations, written in dimensionless form, in this case have 

the form 

Oui 8ui "~ Op t O(~ij 
+ - o ,  ,o w+ j xj) + Ro axj 

p ~ -~ ~ Ox i ] - I - ( ? - - I )  P O ~ - -  HePr Ox) ~t -~ Re 

( 0 ) = 8 ,  p=pO/?M ~, 
2 t (Oui Ouj~ = - = y \ + / ,  ], k = t ,  2 ,  

M = u , / V ? R T , ,  Re = p,U,8/lx,, 5 = (nI~X/p,U,) ~/2. 

a{~e{j, ( i. i) 

Here u I ~ u and u 2 ~ v are the longitudinal and transverse components of velocity in the 
direction of the x I ~ x and x 2 ~ y axes, respectively; p, p, and 8 are the density, pres- 
sure, and temperature of the gas; R is the gas constant. The region in which the indepen- 
dent variables x and y change represents the entire plane -~ < x < ~, -~ < y < ~. We have 
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